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FIG. 2. Temporal behavior of the mean amplitude h|a|i and the circular phase variance Var(f) of reconstructed PW functions, depending on
the selected intensity radius s. A shaded area around the curves corresponds to a one standard-deviation error margin, directly derived from
PW’s uncertainty, but is mostly not visible. The lines with the same color as the data points depict exponential fits. Plots (a) and (b) are for
Pexc = 1.7 Pthr above threshold. The width w of the selected phase-space region is 0.57. Plots (c) and (d) are for Pexc = 0.8 Pthr below threshold.
The width w is 0.1, except for the two highest radii s, where w = 0.57. Insets in (a) and (c) show Husimi functions for those excitation powers
from which the intensity s is selected, cf. Fig. 1. The inset in (d) displays a zoom of the region close to zero delay, revealing an oscillation
of the mean amplitude. Right column exemplifies three PW for Pexc = 1.7 Pthr and a selected radius s = 9.9 at time delays t = �6 ps (top),
t = 494 ps (middle), and t = 1214 ps (bottom).

Experimental results.— As an example, Fig. 2 (right col-
umn) shows reconstructed PW functions for the highest excita-
tion power Pexc = 1.7 Pthr [52] for three different time delays
t . The phase diffuses with increasing t , resulting in the pre-
dicted broadening of the angular distribution. Simultaneously,
the mean amplitude of PW relaxes towards a steady-state value.

To resolve the mean amplitude and the circular variance as
functions of the selected intensity s and time delays t , h|a|i
and Var(f) are directly derived from reconstructed PW(a) via
Eq. (3) and h|a|i =

R
d2a PW(a)|a|, using a discretized set

of phase-space points a = q+ ip. The behavior of both quan-
tities is plotted in Fig. 2(a) and (b) for Pexc = 1.7 Pthr, while
w = 0.6 was kept constant. Lines depict an exponential fit,
which was found empirically to yield the best results com-
pared to Gaussian and power-law fits [45]. Var(f) in plot (a)
has its minimum around t = 0, the smallest value being 0.14
for the highest selected intensity, s = 11. This minimum in-
creases for smaller s because of the fundamental phase-photon
number uncertainty relation [45]. For increasing delays, the
circular variance too increases but does not arrive at a uni-
form distribution (i.e., Var(f) = 1), even for the highest delay
t = 1214 ps. By contrast, the mean amplitude h|a|i in plot
(b) relaxes almost completely towards the steady-state value
for large t , thus decaying even faster than the quantum phase.

Figures 2(c) and (d) show the results for a lower excitation

power, Pexc = 0.8 Pthr. For small s values, the phase variance
increases faster and reaches almost 1, describing full phase
decoherence. Meanwhile, the mean amplitude rapidly decays
towards the steady-state value. Our method also reveals an
oscillation around the stationary value, with a frequency of
about 12.5 GHz. (This can be seen for Pexc = Pthr as well,
but not for higher powers.) We attribute this effect to mode
competition between modes of orthogonal linear polarizations
[45]. A bistable regime of two cross-linear polarizations in
a nonresonantly excited polariton condensate has also been
proposed in Ref. [53], leading to an oscillatory behavior of
the condensate pseudospin components. But modulations of
the spatial density of the polariton condensate, e.g., breathing
modes, can also lie in this frequency range [54].

In addition, we analyze the temporal decay by fitting the
temporal dependence of h|a|i and Var(f) to exponential func-
tions, a exp(�t/tc)+ d, which estimates decay times tc. In
Figs. 3(a) and (b), this decay time is plotted versus the se-
lected intensity radius s for different excitation powers. For
h|a|i, there is no significant dependence on s. In the phase
variance, there is a slight tendency for states with higher
s to have a larger decay time for higher excitation powers,
whereas the opposite trend appears for lower powers. This
might be explained with a lower stability of the system for the
lower powers and thus faster relaxation upon perturbations. At


